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Abstract Attaining the best possible throughput when

computing convolutions is a challenge for signal and im-

age processing systems, be they HPC (High-Performance

Computing) machines or embedded real-time targets.

This importance is highlighted by the numerous meth-

ods and implementations available, often optimized for

particular settings: small batched kernels or very large

kernels, for example. In the meantime, GPUs (Graphics

Processing Units) have become a first-class architecture

for real-time and embedded processing. The power of-

fered by those chips stems from their parallel nature,

and this advantage has been exploited for convolutions

in several libraries. Even more recently, the introduc-

tion of tensor cores on NVIDIA GPUs has opened up

new limits in terms of attainable FLOPS (Floating-

Point Operations per Second). For reaching that perfor-

mance, GPU applications must use GEMMs (GEneral

Matrix Multiplications), that tensor cores accelerate.

We then developed an efficient GEMM-based 2D convo-

lution algorithm in a general setting. On relatively large

kernels (30 ∼ 50-pixel wide), im2tensor is, to the best

of our knowledge, the fastest method for computing 2D

convolutions. We provide detailed performance analy-

sis for different scenarios: small (1024×1024) and large

(4096×4096) images, with convolutions kernels of sizes

ranging 1 to 60-pixel wide, on two GPU cards: Jetson

AGX Xavier (embedded) and Titan V (server-class).

Moreover, the accuracy of im2tensor surpasses non-

GEMM based methods, thanks to the larger-precision
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registers used by tensor cores for intermediate represen-

tations.

Keywords Image Convolution · Hardware Accelera-

tion · GPU Optimisation · Image Processing Systems ·
GPU Tensor Cores

1 Introduction
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Fig. 1: im2tensor achieves 2D convolution of image I

and kernel K with a matrix-tensor product P = KTS

then sums along its diagonals (red arrows).

Convolutions are a fundamental tool of signal pro-

cessing. When applied to images, they serve for template-

matching methods [7], edge detection [31], or noise re-

duction [28]. Convolution is such a ubiquitous opera-5

tion that much work has been devoted to speeding up

its execution on modern computers.
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In its most basic form, computing a 2D convolu-

tion can be done with nested loops that perform a

multiply-and-add routine for each resulting coefficient.10

This strategy is simple but has a computational com-

plexity growing in O(N2M2), with an N×N image and

a M×M kernel. Another method, based on the convolu-

tion theorem in the Fourier space, has a O(N2 log(N))

complexity. While more sustainable for large kernels,15

that strategy introduces significant overhead for smaller

convolutions [26]. Finding more efficient ways of doing

2D convolution is then a challenging topic that would

benefit many real-time image processing applications.

In the meantime, new processor architectures, such20

as GPUs (Graphics Processing Units), have been widely

featured on embedded systems [?]. Those chips are used

extensively for compute-heavy workloads, and the cur-

rent trend is to feature accelerators for specific opera-

tions [13], such as hardware matrix-multiplication units[?].25

On GPUs, tensor cores have been introduced start-

ing on NVIDIA Volta and accelerate applications such

as DNNs (Deep Neural Networks) or, more generally,

BLAS (Basic Linear Algebra Set) operations [6].

More than just plain GEMM programs, other al-30

gorithms may benefit from tensor cores by being re-

expressed as matrix-multiplications. In that regard, a

recent corpus of work has been devoted to using ten-

sor cores, either for parallel primitives [19,9,12], image

processing via a DSL (Domain-Specific Language) [27]35

or CT reconstruction [20], for example.

Regarding convolutions as GEMMs, algorithms ex-

ist but target a specific setting, where a convolution

between a 3D tensor and multiple small kernels is per-

formed. This situation is usually found within CNNs40

(Convolutional Neural Networks). im2col, explained in [?],

targets this very setting. It has been implemented in

the CUDNN library and leverages tensor cores. How-

ever, non-deep learning applications, like large spatial

gradients or Gaussian blurs, do not use batches of ker-45

nels at once. In those cases, im2col might not be the

most efficient method.

In this article, we then introduce im2tensor, shown

on fig. 1, a new 2D convolution algorithm designed to

take advantage of tensor cores in a general setting. Our50

contributions are the following:

– A description of im2tensor algorithm for 2D con-

volutions. It is a composition of a sequence of ma-

trix multiplications and summations on the diago-

nals. Expressed in this form, the 2D convolution can55

leverage matrix-multiplication units.

– A CUDA implementation on Nvidia Titan V and

Jetson Xavier. It serves to demonstrate the sound-

ness of the algorithm under a GPU environment. We

show the different challenges raised by using tensor60

cores and how to get the maximum performance out

of them.

– A comparaison with state-of-the-art methods such

as CUDNN, CUFFT, and ArrayFire [33]. We com-

pare im2tensor results in terms of speed and accu-65

racy. Our proposed algorithm is fastest on a large

range of kernel sizes and is one of the most accurate

methods.

Section 2 presents related work on convolution al-

gorithms and an overview of GPU programming and70

tensor cores. Section 3 explains in detail the im2tensor

algorithm and provides a proof that is it equivalent to

a 2D convolution. Section 4 goes through the details

of the CUDA implementation. It reviews the different

strategies used to minimize the runtime of the algo-75

rithm. Section 5 provides a comparison between our

method and several state-of-the-art implementations.

The evaluation is done in two different contexts: em-

bedded (30W) and desktop (500W). Results are given

in terms of speed and accuracy with respect to a refer-80

ence implementation. Finally, section 6 concludes this

paper and offers directions to follow for further work.

2 Background

2.1 2D Convolutions

Convolutions are a fundamental tool of signal process-85

ing. When applied to images, it serves for template-

matching methods [7], edge detection [31], or noise re-

duction [28]. Convolution is such a ubiquitous operation

that a lot of work has been devoted to speed up its ex-
ecution on modern computers:90

Separable convolutions If the convolution kernel

K can be written as the outer product of two vectors

K = k1k
T
2 , the convolution can be performed in two

steps: R = (I ∗ k1) ∗ k2. This technique reduces the

overall memory pressure but is restricted to particular95

kernels.

Convolutions in the Fourier space A convolution

can be computed with an element-wise multiplication

of the Fourier transforms of the image and the kernel.

This product should then undergo an inverse Fourier100

transform. This technique is asymptotically faster than

convolutions in the direct space but may be slower for

large images and small kernels [26].

Winograd convolutions This category groups sev-

eral methods that build optimal algorithms in terms105
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of arithmetic complexity. In [17], Lavin et al. first pre-

sented a GPU implementation said to be Winograd-

based [32]. Like the Fourier method, it requires the in-

put image and kernel to be transformed, pointwise mul-

tiplied and then be inverse-transformed. It has been110

shown to perform well in DNN for small convolution

kernels but is also sensitive to numerical instability [4].

Overlap and Add This technique follows the divide-

and-conquer strategy: first, divide the input image into

smaller images. Then, compute the convolution of all115

smaller images with the original kernel. Then recombine

the full image and sum where the results overlap. It can

be applied to different algorithms [2].

GEMM-based techniques GEMM strategies are

motivated by heavily optimized libraries for matrix mul-120

tiplication (openBLAS, cuBLAS). im2col is one such

GEMM-based algorithm. First, it flattens the kernel

into a vectorn. Second, it constructs a matrix based the

image’s coefficients so that the vector-matrix product

effectively computes the convolution [8,?]. This method125

yields best performance when processing multiple ker-

nels at once. The vector representations are stacked into

a matrix. Computing multiple convolutions at once is

hence transformed into a matrix-matrix multication,

that leverages more of the GPU compared to vecor-130

matrix. Anderson et al. [3] extend the im2col idea to

different layouts.

The design of im2tensor has been guided by other

GEMM-based techniques. The unique feature of our al-

gorithm is that it exhibits matrix-matrix multiplica-135

tions even with a single kernel. This situation is found

in several computer vision algorithms, such as Harris

corner detection or SURF features that use differential

or gaussian kernels [?,?].

2.1.1 Notations140

In this article, a lowercase a denotes a coefficient, the

bold lowercase a is a vector, the uppercase A is a ma-

trix, and the bold uppercase A is a three-dimensional

tensor. Ai,j denotes the coefficient in the i-th row, j-th

column of A. The colon notation selects all elements in145

a dimension: Ai,: is the entire i-th row of A.

Let I be an image of size (hI , wI) and K be the

kernel of size (hK , wK). Let R, of shape (hR, wR), be

the convolution of I by K, defined by:

∀i ∈ J0, hI − hKK,∀j ∈ J0, wI − wKK, (1)

Ri,j =

hK−1∑
y=0

wK−1∑
x=0

Ky,xIi+y,j+y (2)

Formally, this definition is a cross-correlation. For150

the sake of simplicity, it is, anyway, called a convolu-

tion throughout this article. The real convolution can

be computed by cross-correlating the image with the

reversed kernel. With our definition, the result’s dimen-

sions are (hR, wR) = (hI − hK + 1, wI − wK + 1). To155

adhere to numpy and Matlab conventions, this is the so-

called “valid” convolution. A “full” convolution yields

a (hI +hK − 1, wI +wK − 1) output while “same” pro-

duces a (hI , wI) result. The latter two methods require

conditions on the borders. They can be computed by160

doing a valid convolution on a pre-padded image. Fig-

ure 2 introduces the above notations.
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Fig. 2: The valid convolution between I and K.

2.2 GPU Programming

GPUs were initially designed for efficient production

and display of images on computer screens. They first165

achieved this goal by means of hardware-fixed functions

such as rasterization and pixel shading. With the ever-

growing interest in such a powerful processor, GPUs

became more flexible and open to general computation.

In 2007, Nvidia released the CUDA language that made170

GPUs handy as a compute platform.

From the software perspective, CUDA bases its pro-

gramming model on a SIMT (Single Instruction, Mul-

tiple Threads) paradigm, a variant of SIMD (Single

Instruction, Multiple Data). The programmer writes a175

single program and specifies how many threads should

run it. Threads are partitioned into Thread Blocks (TB)

of a customizable size where threads can be synchro-

nized using barrier instructions and share data effi-

ciently through shared memory. This memory location180

is used in our implementation to share partial matrix

multiplication results.

See [16,25,15] for more information about GPU and

CUDA programming.

2.3 Tensor Cores185

Tensor cores are recent additional hardware built into

the Volta (2017) and later GPU architectures [21–23].
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These special units compute a matrix multiplication

and accumulation: D = AB + C as shown in fig. 3.

While tensor cores operate on 4×4 matrices at the hard-190

ware level, the ISA (Instruction Set Architecture) of

NVIDIA GPUs provides instructions for larger operand

sizes. This is made possible by combining block matri-

ces operations.
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Fig. 3: The matrix multiplication-and-accumulation op-

eration made by a tensor core.

The operands A, B, C, and D may be stored with195

several numerical precisions. The supported formats de-

pend on the generation of the GPU. Volta GPUs brought

the first generation of tensor cores and only supported

fp16 precision (IEEE 754 binary16 ). Turing and Am-

pere added support for other input types while keep-200

ing backward compatibility for already supported pre-

cisions. The output type is usually the same as the input

matrices, except for fp16 inputs, where the user chooses

between an fp16 or fp32 output.

Several authors have explored the arithmetic accu-205

racy of such reduced or mixed-precision operations [14,

18,5]. Several experiments are conducted later in this

article to assess those effects on our convolution algo-

rithm.

3 The im2tensor algorithm210

This section introduces our novel algorithm to compute

a valid convolution between an image I and a kernel

K, as defined in section 2.1.1. The algorithm has two

main components, the definition of a 3D tensor S that

holds row selections of I and a sum operation along its215

diagonal with the Tr+ operation.

First, let S be a tensor of shape (hS , wS , dS) =

(hK , wI , hI − hK + 1), such that:

∀i ∈ J0, hK − 1K,∀j ∈ J0, wI − 1K,∀k ∈ J0, hI − hKK,
Si,j,k = Ii+k,j (3)

Then, we define the Tr+ operation, a sum along the

tensor diagonals, like:

Tr+ : Rh×w×d → R(w−h+1)×d (4)

A 7→ A,Ai,j =

h−1∑
k=0

Ak,i+k,j , (5)

∀i ∈ J0, w − hK,∀j ∈ J0, dK (6)

Let us now show that Tr+(KTS) is, indeed, the

“valid” convolution between I and K:

Proof

[
Tr+(KTS)

]
i,j

=

wK−1∑
x=0

(KTS)x,i+x,j (7)

=

wK−1∑
x=0

hK−1∑
y=0

KT
x,ySy,i+x,j (8)

=

wK−1∑
x=0

hK−1∑
y=0

Ky,xIj+y,i+x ut (9)

Figure 1 illustrates the KTS product and the ap-

plication of the Tr+ operation, shown with red arrows.220

We call im2tensor the algorithm that uses such a ten-

sor S and the Tr+ operation to compute a convolution.

It is well-suited for parallel computation and exhibits

a matrix-tensor product that may leverage specialized

hardware units such as tensor cores.225

4 Efficient GPU implementation

The previous section introduced the mathematical rea-

soning behind im2tensor. Many hardware architectures

could benefit from computing convolution as a matrix-

tensor multiplication. In this section, we restrict our-230

selves to using NVIDIA GPUs and their tensor cores.

It allows us to verify the interest of the algorithm on a

readily available platform.

4.1 Overview

For the initial version, we implement im2tensor with235

two CUDA kernels. One for the matrix-tensor product,

one for the Tr+ operation. We divide those two tasks

into independent pieces of work, handled by CUDA

thread blocks (TBs). For the matrix-tensor operation,

the KTS tensor is split into different sub-tensors (see240

fig. 4) called Pblock. For Tr+, we process all diagonals

in parallel. Algorithm 1 details the structure of the al-

gorithm.

An important implementation feature is to avoid

the explicit construction of S. This is made possible by245
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Kblock

Sblock

Pblock

KT
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P

hB

wB dB

Fig. 4: A Pblock is handled by a thread block. To com-

pute its values, the TB must read the associated Kblock

and Sblock.

1 Function Im2Tensor
input : An image I, a kernel K
output: R the 2D valid convolution

2 KT ← transpose(K)
3 begin CUDA Kernel
4 while any Pblock remains do
5 bidx ← getPBlockIdx (TBidx)
6 Kblock ← readLines (KT , bidx)
7 Sblock ← readAndBuildSubTensor (I, bidx)
8 Pblock ← matTensorMultiply (Kblock, Sblock)

9 end

10 end

11 begin CUDA Kernel
12 while any diagonal remains do

13 d(k), d(l) ← getDiagIds (Threadidx)

14 s ← sumDiagonal (P, d(k), d(l))
15 storePixel (R, s)

16 end

17 end

Algorithm 1: Pseudo-code description of

im2tensor.

reading directly rows of I when a TB needs them for a

matrix-matrix product (algorithm 1, line 6).

4.2 Performance optimization

4.2.1 Tensor cores considerations

im2tensor is designed to run efficiently on matrix mul-250

tiplication units, such as tensor cores, presented in sec-

tion 2.3. The first part of im2tensor computes KTS,

a matrix-tensor product, which is, in essence, a collec-

tion of matrix-matrix multiplications. In turn, each of

these products can be further decomposed into smaller255

block-matrices products that are accelerated by tensor

cores.

Since tensor cores only accept matrices of a lim-

ited choice of dimensions as inputs, our implementa-

tion must pad block-matrices to work around this con-260

straint. A bad choice for the input dimensions may lead

to significant overhead, so it is in our best interest to

find a sensible choice of those tensor cores input shapes.

Let the tensor cores input dimension be (mtc, ntc, ktc).

For a convolution kernel (hK , wK) = (5, 5) and tensor265

core input dimension of size (32, 8, 16), the KT must be

padded to an height of 32. With this choice of shape,

tensor cores mostly operates on zero padding.

For im2tensor to operate efficiently with tensor core

on a diversity of images’ and convolution kernels’ shapes,270

we explore how to choose the best set of input shapes.

First, we introduce the notation dme(n), the multiple of

n directly higher than m:

∀n ∈ N∗,∀m ∈ N, dme(n) 7→ ndm
n
e (10)

Zero-padded matrices use a hat in their name, such

that:

ŵK = dwKe(mtc), ĥK = dhKe(ktc), ŵI = dwIe(ntc) (11)

K̂T =

[
KT 0

0 0

]
∈ RŵK×ĥK (12)

∀k ∈ J0, dS − 1K, Ŝ:,:,k =

[
S:,:,k 0

0 0

]
∈ RĥK×ŵI (13)

Now, we have P̂ = K̂T Ŝ of shape (ŵK , ŵI , hI −
hK + 1).275

4.2.2 Computational Complexity

Let us show the impact of padding on the algorithm

by deriving its computational complexity. Our method

uses a simple matrix multiplication algorithm, without

Strassen-like methods’ sophistication. Then, its com-

plexity is:

O
(
ŵKŵI ĥK(hI − hK + 1)

)
(14)

i.e.,O
(
dwKe(mtc)dwIe(ntc)dhKe(ktc)(hI − hK + 1)

)
(15)

Three terms are directly impacted by the padding

introduced by tensor cores’ input shapes. In our setting,

the image is significantly larger than the kernel: wI �
wK , wI � hK . This assumption guide indicates that280

that ktc and mtc should prioritly be kept small.
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4.2.3 Arithmetic Intensity

The arithmetic intensity of a computer program that

transfers Q bytes of data to execute W operations is

defined as: ai =
W

Q
.285

This measure, central to the roofline model analy-

sis [30], must be high enough to claim using the GPU

efficiently [10]. It is usually measured at execution time

through performance counters. We, however, propose

an a priori estimation of the arithmetic intensity to290

guide our design choices.

We are interested in the computation of a Pblock,

of size (hB , wB , dB), as shown in fig. 4. Let us see how

these three dimensions should be chosen to maximize

the arithmetic intensity.295

As for data transfers, this operation fetches data

from K̂T : a (hB , ĥK) sub-image; and from S: a (ĥK , wB , dB)

sub-tensor. Due to duplicate rows in Sblock, this sub-

tensor only requires reading a (ĥK + dB − 1, wB) sub-

image from I. Memory writes are not counted in this300

analysis.

Regarding operations, the matrix-tensor products

for Pblock involve hBĥKwBdB multiplication additions.

Then, we have:

ai(hB , wB , dB) =
hBĥKwBdB

hBĥK + (ĥK + dB − 1)wB

(16)

hB wB dB ai(hB , wB , dB)

16 16 16 103.7
32 16 16 147.6
16 32 16 130.0
16 16 32 172.5

Table 1: Value of ai for some choices of hB , wB , and

dB , with ĥK set to 32.

The analysis of numerical results in table 1 show

that it is preferable to increase dB as a priority, then hB ,

and finally wB . One must still consider that increasing

dB and hB means reading more rows of I, which is305

usually slower than reading longer rows (by increasing

wB) due to the memory layout of the image.

In our experiments, with (mtc, ntc, ktc) = (8, 32, 16),

we set (hB , wB , dB) to (8, 32, 32) as it provided the best

results.310

4.2.4 Fusing the operators

Section 4.2.3 showed how to choose adequate dimen-

sions for Pblock to get a sufficient arithmetic intensity.

However, the number of writes in memory to store the

intermediate tensor P was not considered.315

To mitigate overutilization of the memory band-

width, a technique called kernel fusion can be quite ef-

ficient [11]. Here, we propose to fuse the computation

of Pblock and the sums on the diagonals of P .

We can take advantage of the fact that a Pblock is320

computed by a TB to store it on the shared memory

first, then sum along its diagonals, and finally, write

those sums back to main memory. By doing so, the stor-

age space requirement and main memory bandwidth

usage drop from hBwBdB to (hB + wB − 1)dB .325

The proposed algorithm is then modified to include

this Pblock partial reduction. The sum on diagonals is

now split into two passes: the first one within the shared

memory for a Pblock, then recombination of the partial

sums from the different Pblocks. The pseudo-code in al-330

gorithm 2 summarizes this idea.

1 Function Im2TensorFused
input : An image I, a kernel K
output: R the 2D valid convolution

2 KT ← transpose(K)
3 begin CUDA Kernel
4 while any Pblock remains do

5 bidx ← getPBlockIdx (TBidx)
6 Kblock ← readLines (KT , bidx)
7 Sblock ← readAndBuildSubTensor (I, bidx)
8 Pblock ← matTensorMultiply (Kblock, Sblock)
9 dpartial ← sumTensorDiagonals (Pblock)

10 store (Ppartial, dpartial)

11 end

12 end
13 begin CUDA Kernel
14 while any diagonal remains do

15 d(k), d(l) ← getDiagIds (Threadidx)

16 s ← sumDiagonal (Ppartial, d(k), d(l))
17 storePixel (R, s)

18 end

19 end

Algorithm 2: The fused im2tensor variant.

Finding an efficient data structure to hold the par-

tial sums of a tensor is not straightforward. The per-

haps simplest idea would be to store partial sums of

a diagonal directly on the pixel of R it contributes to.335

This requires atomic sums for all thread blocks to work

concurrently. In the following, this strategy is named

atomic. On the one hand, it removes the need for an

intermediate buffer. On the other hand, it makes the

algorithm slower, as atomic memory accesses are seri-340

alized and do not fully utilize the available bandwidth.

For better performance, we developed a method that

does not rely on atomic operations. Let us present it in

a simple case. A is a (hA, wA) matrix on which Tr+
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should be applied. A is partitioned by the submatrices345

{M (i,j)} of size (hM , wM ) as shown in fig. 5.

A =

 M (0,0) · · · M (0,wA/wM )

...
. . .

...

M (hA/hM ,0) · · · M (hA/hM ,wA/wM )

 (17)

Let us explore a method for computing sums on

the M (i,j) concurrently. This would translate into each

GPU TB being affected to a M (i,j) block in our im-

plementation. To do so, a 2D buffer C is used to store350

partial sums computed in each submatrix. Each col-

umn of C is reserved for a diagonal of A. Each M (i,j)

writes its partial results on a row of C. In fig. 5, M (0,1)

computes partial sums of A-diagonals d(3) to d(9). The

results are written to C0,3:9.355

Reserving one row of C per B-block would waste

a lot of space. We adopt two strategies to reduce the

memory footprint needed for C. First, blocks on the

same block-antidiagonal (i.e. ∀n, {M (i,j), s.t. i + j =

n}) do not have any diagonal of A in common to sum.360

This way, they can safely use the same row C, as the

columns they use don’t overlap. In fig. 6, M (1,1) and

M (0,2) use the third row of C.

Second, let’s examine a block-antidiagonal’s mem-

ory footprint on C: it is a segment of length hA − 1 +

wM min( hA

hM
, wA

wM
). Moreover, the gap in the diagonal

indices treated by two consecutive block-antidiagonals

is wM . Thus, when two antidiagonals are sufficiently

apart from each other, they may safely use the same

row of C. With antidiagonals n and m (with m > n)

this happens when:

(m− n)wM > hA − 1 + wM min

(
hA

hM
,
wA

wM

)
(18)

m− n ≥ dhA − 1

wM
e+ min

(
hA

hM
,
wA

wM

)
(19)

In fig. 6, this is shown with M (0,0) and M (1,2), from

antidiagonals 0 and 3, using the same row of C.365

With these two techniques, the required number

of rows for C is reduced from ( hA

hM

wA

wM
) to

(
dhA−1

wM
e +

min( hA

hM
, wA

wM
)
)
.

Compared to the initial algorithm, the fused version

limits the memory footprint by avoiding the creation of370

P . It also limits the main memory bandwidth through

partial summations in the Pblock.

In a setting where the image is 1024 × 1024, the

kernel 32× 32 and wB = hB = 32, the fused algorithm

reduces by ∼ 15× its memory bandwidth.375

d(3) d(9)

M (1,0)

M (0,0)

M (1,1)

M (0,1)

M (1,2)

M (0,2)

A

Fig. 5: The matrix A is divided into submatrices

{M (i,j)}. M (0,1) computes partial sums for d(3) to d(9).

C

d(−hA+1) d(3) d(9) d(wA−1)

M (1,1) M (0,2)

M (1,0) M (0,1)

M (0,0) M (1,2)

Fig. 6: Each M (i,j) writes its results to a segment of C.

To get the full sum for d(3), one should add the partial

sums from M (0,0), M (0,1), and M (1,1).

5 Results

5.1 Introduction

5.1.1 Experimental setup

This section presents the results of several experiments.

They were run in two environments, as detailed in ta-380

ble 2. We are interested in two facets of a convolution’s

performance: the speed and the accuracy of its results.

Machine #1: desktop
Machine #2: embedded

(Jetson AGX Xavier)

OS Ubuntu 16.04 Ubuntu 18.04
Linux Kernel 4.15.0 4.9.140
CUDA 11.2 10.2
NVIDIA Driver 450 JetPack 4.4
CPU Intel i7-3820 8-core ARM 64bits
GPU Titan V (arch. 7.0) Xavier (arch. 7.2)
TDP ∼500W ∼30W

Table 2: Environments of the experiments.

For speed tests, we run the implementations on the

cameraman image (see fig. 7), resized to (1024 × 1024)

or (4096 × 4096) pixels. This setting has been chosen385

to mimic an industrial context where an image is to be

preprocessed by a large Gaussian kernel.

We summarize the results by taking the median exe-

cution time over 20 runs. Our benchmark program mea-

sures performance with the help of cudaEvents. The390

reported timings measure the GPU kernel’s execution

time. CPU/GPU transfers are left aside, as we assume

that they all already live in the GPU memory.

For accuracy, we rely on the median absolute per-

centage error (median APE, or MAPE). For a pixel pi,395
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Fig. 7: Left, the original image. Middle, a 15×15 ran-

dom kernel. Right, the “same” convolution.

generated by the algorithm under test and compared

to ri, the pixel from the reference implementation, the

APE is defined as:

APE(pi) =

{
|pi−ri

ri
|, if ri 6= 0

0, if ri = 0
(20)

We aggregate the results on 39 images from the Mis-

cellaneous USC-SIPI dataset [29]. Kernels’ coefficients400

are randomly chosen in the interval [0, 1). We use scipy’s

correlate2d with float64 numbers to generate reference

results. All images are also stored on disk in float64

precision using the FITS format.

When the precision used by an algorithm is less than405

fp64, we initially convert the image and kernel to the

lower precision. That lower precision is subsequently

used for all computations and storage. It is finally pro-

moted to fp64 to compute its APE.

We also consider mixed-precision: in fp16fp32, the410

algorithm accesses data in fp16, does the computation

in fp32, and store the final result in fp16 (which will

later be promoted to fp64 for file storage). For ten-

sor core implementations, the situation is slightly more

subtle: with fp16 input, tensor cores always use fp32415

internal registers for intermediate results (see fig. 8).

In what we call fp16 implementation, an fp16 output

is requested from the tensor core. For fp16fp32, we use

fp32 results from the tensor core.

A
coef.

B
coef.

× + D
coef.

C
coef.

fp16 input fp32 internal fp16 or fp32

Other products

fp32
multiplier

fp32
accumulation

Fig. 8: Internal decomposition of a tensor core

operation. Based on: https://developer.nvidia.com/blog/

programming-tensor-cores-cuda-9/.

The exclusive mode is requested for the GPU under420

test, which means that no other programs will interfere

with its execution. Moreover, the GPU clocks are set

to fixed values to mitigate dynamic frequency scaling

effects.

5.1.2 Implementations Under Test425

In this benchmark, we try to cover a broad range of al-

gorithms. However, to make the comparison fair, we re-

stricted ourselves to general implementations, not ded-

icated to one kernel size. While those specialized pro-

grams may reach 2-5× speedups compared to general430

algorithms, they need to produce an executable for each

kernel size. Thus, the compilation time increases, and

the final binary is large, making it less prone to general-

purpose library integration.

We compared two families of in-house implemen-435

tations (“naive”, im2tensor) with first-party NVIDIA

libraries (CUFFT, CUDNN, NPP) and a third-party

library (ArrayFire). Let us give a brief description of

each algorithm:

im2tensor This is the algorithm explained in this440

article. The + shmem versions use the shared mem-

ory for efficient reuse of Sblock and Kblock. The + fused

versions use the optimization explained in section 4.2.4.

Finally, the via CUBLAS version builds the S tensor

explicitly and uses CUBLAS to perform matrix multi-445

plications between KT and the slices of S.

“Naive” This is the classical approach for convolu-

tions on GPU: each GPU thread is assigned to comput-

ing a resulting pixel. Therefore, each thread loops over

the kernel and image pixels to multiply and sum. In the450

+ shmem version, threads in the same thread block use

the shared memory to reuse image pixels. Most of the

code is inspired by CUDA samples [24].

CUFFT This algorithm performs convolutions in

the Fourier domain. The time to do the Fourier trans-455

form of the kernel is not counted, as it could easily

be precomputed and stored in a real-world applica-

tion. What counts for this implementation is the Fourier

transform of the image, the pointwise multiplication in

the Fourier domain, and the inverse Fourier transform.460

CUDNN This library, used for deep neural networks,

features the im2col algorithm [8]. We used “cudnn-

ConvolutionForward” with the “CUDNN CONVOLU-

TION FWD ALGO IMPLICIT GEMM” setting on ver-

sion 8.1.1 (2021).465

NPP NPP are NVIDIA Performance Primitives. They

contain many utility functions for signal and image pro-

cessing.
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ArrayFire This general-purpose GPU-accelerated li-

brary features convolution implementations based on470

Fourier transform (ArrayFire Freq.) or similar to naive

+ shmem (ArrayFire Spatial) [33]. Used on version 3.8.0

(2021).

5.2 Performance

0 10 20 30 40 50 60

Kernel size (in pixel)

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
(m

s)

Implementation

im2tensor (via cuBLAS GEMM)

im2tensor (base)

im2tensor + shmem

im2tensor + shmem + fused

im2tensor + shmem + fused + atomic

Fig. 9: Effects of im2tensor (fp16) optimizations on Ti-

tan V on 1024 × 1024 images.

Figure 9 shows the results for different implementa-475

tions of the im2tensor algorithm. The CUBLAS version

creates the whole S tensor before using the GEMM

CUBLAS implementation for multiple matrix-matrix

multiplications, as explained in section 5.1.2. Because

the time to create S is not counted, it only serves as480

a reference for the other implementations. Aside from

that, even if the CUBLAS library is highly optimized

for GEMMs, it is still penalized, with respect to other

implementations, by the large data movement that re-

sults from fetching S entirely.485

The base im2tensor algorithm already achieves sat-

isfying results. Nevertheless, we applied the optimiza-

tions discussed previously. The shmem version performs

slightly worse, we suppose it is mainly caused by bank

conflicts in the shared memory and to the L1 cache490

being already as efficient as using shared memory.

By adding the fused optimization, though, the ini-

tial algorithm is outperformed. This confirms the effi-

ciency of reusing data as much as possible once they

have been moved to the thread block. At last, the ad-495

ditional atomic optimization slows down the runtime

slightly, but does not rely on any intermediate buffer.
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T
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e
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Nvidia Titan V - 8192×8192 images

cuDNN

Direct

Direct + shmem

CUFFT

im2tensor + shmem + fused

Fig. 10: Comparison of fp16 algorithms in two contexts:

(1024 × 1024) images on Jetson Xavier and (8192 ×
8192) images on Titan V. Bands represent the 95% con-

fidence interval.

In fig. 10, the im2tensor algorithm is compared with

other fp16 implementations. CUDNN proves to be rather

slow in with a single kernel setting. Naive implemen-500

tations perform well for relatively small kernels. The

usage of shared memory is beneficial for larger kernels.

Note that both programs use the vectorized half2 data

type to maximize compute-throughput. The Fourier im-

plementation, CUFFT, is almost constant with respect505

to the kernel size. The overhead for small kernels is

prohibitive but becomes less of a problem with large

kernels (> 40 pixels).

Our algorithm behaves quite well for all kernel sizes.

On small kernels, it is on par with the best implemen-510

tations. The overhead due to padding for tensor cores

does not allow it to be the fastest. As the kernel grows

in size, the im2tensor execution time curve is less steep

than “naive” implementations. Thus, it is the fastest

for kernels between 15 and ∼ 50 pixels in size.515

For very large kernels, CUFFT remains the fastest.

This seems sensible, as the algorithmic complexity is
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asymptotically better for convolutions in the Fourier

space rather than in the direct space.

Additionally, we collected several runtime metrics520

to understand the implementations’ bottlenecks. For a

kernel of size 40, the “naive” + shmem implementation

is compute-limited. It uses more than 95% of the GPU’s

ALU throughput. That limitation is also present for

CUDNN, which uses about 80%. Conversely, CUFFT525

is mostly bandwidth-limited: it attains 85% of the the-

oretical memory bandwidth. Finally, our im2tensor ver-

sions are mainly occupancy-limited. This restriction is

caused by their large register footprints and required

shared memory (for versions that use it).530

Implementation Precision Kernel Size

3 15 25 35 55

“Naive”

fp16

0.21 3.11 8.37 16.17 41.27
“Naive” + shmem 0.31 1.64 3.71 7.43 16.48
CUFFT 5.95 5.96 6.08 5.95 5.96

im2tensor + shmem + fused 0.63 1.23 2.70 4.64 7.02
im2tensor + shmem + fused + atomic 0.82 1.50 3.04 4.86 7.24

“Naive”
fp16fp32

0.39 6.62 17.91 34.72 84.96
“Naive” + shmem 0.47 3.06 7.21 13.55 47.06
im2tensor + shmem + fused 1.07 2.30 4.70 8.37 12.55

im2tensor + shmem + fused + atomic 1.44 2.86 5.73 9.51 14.04

“Naive”

fp32

0.41 6.16 16.71 32.31 168.22
“Naive” + shmem 0.51 2.47 6.38 14.78 38.12
ArrayFire (Freq.) 10.79 10.79 10.78 10.79 10.79
ArrayFire (Spatial) 0.40 2.68 — — —
CUFFT 9.65 9.64 9.64 9.64 9.64

NPP 0.25 2.74 7.18 14.01 34.34

“Naive”

fp64

0.52 6.46 17.53 59.79 214.71
“Naive” + shmem 0.69 3.21 10.82 14.89 45.86
ArrayFire (Freq.) 21.51 21.51 21.51 21.52 21.52
ArrayFire (Spatial) 0.56 2.84 — — —
CUFFT 24.59 24.59 24.58 24.59 24.59
NPP 0.47 5.71 14.74 28.46 70.60

Table 3: Median execution time (in ms) on 4096×4096

images vs. size of kernel. Best time per category is high-

lighted.

Table 3 provides timings for various implementa-

tions and several precisions. It shows once again that

im2tensor is the fastest method for most kernel sizes.

Our algorithm also performs well in the mixed fp16fp32

case. Note that im2tensor algorithms are only imple-535

mented in fp16 and fp16fp32, due to a limition in NVIDIA’s

API. In fp32 and fp64, ArrayFire (Spatial) cannot han-

dle large kernels. For those cases, the result is marked

“—”.

Implementation Extra memory requirement (MB)

“Naive” 0
CUDNN 260
CUFFT 1,680
im2tensor 516
im2tensor + shmem + fused 98
im2tensor + shmem + fused + atomic 0

Table 4: Algorithms’ required memory for a 15×15 con-

volution with a 4096× 4096 image. Add 423MB to ac-

count for image, kernel, and result storage as well as

CUDA runtime.

Finally, table 4 shows the VRAM used by different540

algorithms to perform their operations. The “naive”

version does not need additional storage: its output

is computed and directly stored in the result buffer.

CUFFT is memory intensive due to the intermediate

Fourier transforms. Also, the different im2tensor op-545

timizations prove to have a significant impact on the

space requirements. The “shmem + fused” version re-

duces the baseline im2tensor algorithm by more than

80% as shown in fig. 6. In contrast, the atomic variant

eliminates any additional memory.550

5.3 Accuracy

The previous section highlighted the difference in speed

across floating-point formats. There is, however, a trade-

off between speed and accuracy when it comes to float

operations. Figure 11 compares some implementations’555

accuracy. The results are averaged over the whole USC-

SIPI (Misc) database, with 95% confidence bands. The

naive implementation grows from 0.02% MAPE eq. (20)

to about 3% for kernels from 3 to 60. It means that for

a large kernel, you can expect a 3% inaccuracy for each560

pixel.
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Fig. 11: MAPE accuracy of algorithms in fp16 (solid)

or fp16fp32 (dashed). One color per algorithm. Lower

is better.

This inaccuracy might be too large in some con-

texts [26]. Fortunately, other implementations perform

better. CUFFT is almost constant at 0.1%. im2tensor

algorithms in fp16 reach a constant 0.02% inaccuracy,565

whatever the kernel size. Finally, the performance of
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the “naive” algorithm meets those of im2tensor when

it is executed in fp32fp16 mixed precision.

The remarkable performance of im2tensor is explained

by the use of tensor cores. As fig. 8 showed, even in fp16570

precision, the intermediate results of the tensor core

are computed with fp32 numbers [14,1]. Given that the

accuracy of im2tensor (fp16) is about the same as the

mixed (fp16fp32) versions of “naive” and im2tensor, we

can deduce that the accuracy is further limited by the575

storage type rather than the type used for intermediate

computations.

Implementation Precision Kernel Size

3 15 25 35 55

“Naive”
fp16

2.73e-02 1.21e-01 2.08e-01 1.04 2.91
CUFFT 1.06e-01 1.12e-01 8.75e-02 8.37e-02 8.57e-02
im2tensor + shmem + fused 2.09e-02 2.03e-02 1.83e-02 1.77e-02 1.78e-02

“Naive”
fp16fp32

1.76e-02 1.69e-02 1.69e-02 1.69e-02 1.70e-02

im2tensor + shmem + fused 1.90e-02 1.97e-02 1.78e-02 1.72e-02 1.72e-02

“Naive”

fp32

3.54e-06 1.48e-05 2.42e-05 3.39e-05 5.30e-05
ArrayFire (Freq.) 2.55e-05 2.89e-05 2.51e-05 2.70e-05 2.76e-05
ArrayFire (Spacial) 3.61e-06 1.48e-05 — — —
CUFFT 1.98e-05 1.82e-05 1.99e-05 1.93e-05 1.80e-05

NPP 3.63e-06 1.48e-05 2.42e-05 3.39e-05 5.30e-05

“Naive”

fp64

0 0 0 0 0

ArrayFire (Freq.) 1.93e-14 3.40e-14 4.96e-14 6.59e-14 1.02e-13
ArrayFire (Spacial) 1.11e-14 3.83e-14 — — —
CUFFT 2.11e-14 3.38e-14 4.91e-14 6.59e-14 1.02e-13
NPP 1.11e-14 3.83e-14 6.29e-14 8.76e-14 1.37e-13

Table 5: Median accuracy (in percentage) of convolu-

tions vs. size of kernel.

For reference, accuracy results are included for higher

precision in table 5. In fp32, the trend is the same, with

the “naive” growing with the kernel size. Most results580

stay within a 10−5, 10−6% accuracy.

In fp64, the “naive” implementation is bit-accurate,

hence the 0 precision. This is due to the reference scipy

version making the same sequence of operations to com-

pute the convolution. Other implementations are very585

close, about 10−14%. Since the reference implementa-

tion also cannot be perfectly precise, it is hard to con-

clude for an implementation to be more accurate than

another in fp64.

6 Conclusion590

In this article, we have proposed a new algorithm for 2D

convolutions, im2tensor, that exhibits matrix-multiplication

operations. We implemented it on NVIDIA tensor cores,

that allow modern GPUs to feature extensive FLOP/s

capabilities.595

We conducted an analysis of the algorithm in terms

of algorithmic complexity and arithmetic intensity. This

helped us make the best choice of parameters for im-

plementing our algorithm based on matrix-tensor mul-

tiplication.600

To prove the relevance of this new method, we have

benchmarked several well-known implementations on

GPUs. For completeness, we compared in-house imple-

mentations with first and third-party libraries. The ef-

fects of floating-point precision on the accuracy of the605

computation were also reviewed.

We evaluated those methods on two different setups:

embedded (∼ 30W) with an NVIDIA Jetson Xavier and

desktop (∼ 500W) with an NVIDIA Titan V. Based on

our experiments, it appears that our optimized method610

for computing convolution via matrix-tensor multipli-

cation with tensor cores is competitive for a large range

of kernel sizes.

For small kernels (≤ 20-pixel wide), it is on par

with shared memory “naive” implementations and 10×615

faster than Fourier transforms. For large kernels (∼ 50

pixels), our method is as fast as Fourier transforms and

2× faster than shared-memory “naive”.

Regarding accuracy, compared to other fp16-only

methods, our algorithm is 5× more precise than Fourier620

transforms and 100× as good as “naive” implementa-

tion for large kernels, in terms of MAPE. This gain is

directly provided by tensor cores, as they use extended-

precision intermediate registers.

In the future, the im2tensor algorithm could be625

extended to the newer Ampere architecture. Further

optimization could be conducted to use the low-level

mma interface to tensor cores and attain maximum

performance. Non-GPU targets may also benefits from

im2tensor, such as Google’s TPU or Habana’s Gaudi [?].630
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